
Journal of Applied Mechanics and Technical Physics, Voi. 36, No. 4, 1995 

A M E T H O D  F O R  T H E  SOLUTION OF T H E  T W O - D I M E N S I O N A L  

M U L T I F R O N T  STEFAN P R O B L E M  

A .  S. O v c h a r o v a  UDC 532.516.5-}-519.63 

A method for the solution of the thermoconvective problem in a multilayer medium with curvilinear 
and, in the general case, mobile interfaces is proposed. Such a situation can occur when temperature fields in 
a multilayer medium (for example, oil, ground, and water) with different thermal conductivity of the layers 
must be calculated, or in problems connected with crystallization (melting). The idea of the method is based 
on the decomposition of a complex system into unitary elements (modules) given that there is a set of rules 
for their coupling with each other. Each module is a single-type local model where the calculation is organized 
independently of the other modules of the system, while the set of rules determining, for example, the common 
boundaries between the modules and their functional dependences on them, combines these modules into the 
initial system. The problem is solved under the following assumptions: 1) the thermophysical properties of 
the substances in each medium are constant; 2) the density jump during the phase transition is ignored. 

1. The  Mathema t i ca l  Model .  Let a domain G with solid sides 0 ~< z <~ 1, fo(z) <<. y <<. fM(x) include M 
substances separated by curvilinear and, in the general case, mobile boundaries fro(t, z) (m = 1 , . . . ,  M - 1) 
(Fig. 1). We shall assume that in each of the subdomains filled by the liquid phase of the substance, convective 
movement of the liquid takes place. In the Oberbeck-Boussinesq approximation [1], it is described by a system 
of equations, which can be represented in dimensionless form, as in [2]: 

0r OT Ow 0 / 0r 0 w ~ x  = A w + G r  (1.1) 
0-7 + ~ t ,  <'' ~,S - ~ ~ ;  

Ar  + ~ = 0; (1.2) 

OT 0 (TOr 0 0r ~--~AT. 
o-T + - : I1 1 

In each of the subdomains filled by the solid phase, the equation of thermal conductivity is fulfilled: 

OT 1 
0t = ~rr AT" (1.4) 

Here Gr = g~Ox~/v  2 is the Grashof number (x0 is the size in x); Pr = v/X is the Prandtl number; g is 'the 
acceleration of gravity (the vector of gravity is parallel to the y axis and is pointing downward); the stream 
function r is introduced by the relations 

0r 0r (1.5) v=--- ~ ,  v, = - ~ .  

The sought-for functions are the velocity vortex w(t, z, y), the stream function r z,y),  the temperature 
T(t, x, y), as well as the interfaces fro(t, x) if crystallization or melting take place. We shall consider that the 
initial conditions for the functions w, r T, fm are specified. 
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Fig. 1 

The boundary conditions for the temperature on the external sides of the domain G (x = 0, x = 1, y = 
fo(x), y = fm(z ) )  can be given in the form 

s T + r i  OT ~n = ")'(t) (1.6) 

(~ and ~ take the values 0 and 1). 
At all the internal boundaries, i.e., on the curves f~,(t,x) (m = I,...,M- 1), the conditions of 

conjugation are fulfilled: 

Tin(z, fro(t, x)) = Tm+l(z,  fro(t, x)); (1.7) 

OT ra OTm+ l 
v~  = k~ ~ - k~+l  0n ' (1.s) 

where n is the vector of the normal to the curve fm( t ,x )  at the point x; kin, T m and kin+l, T 'n+l 
are dimensionless coefficients of thermal conductivity and the temperature for the substances filling the 
subdomains m and rn + 1, respectively; V~ is the movement speed of the boundary fro(t, x) in the direction 
of the normal to it. Hereafter the index m (superscript br subscript) denotes that the function or operator 
belongs to the subdomain m bounded by the curve fm+l from above and by the curve fin (m = 0 , . . . ,  M - 1) 
from below. 

The boundary conditions for the stream function and the velocity vortex are given in the form of 
viscous nonslip conditions, i.e., 

v l r  = 0 (1.9) 

(F is the boundary of the subdomain m). 
2. M e t h o d  of  Solu t ion .  First of all, note that Eqs. (1.1)-(1.4) are of the same type within the 

framework of the Oberbeck-Boussinesq model. This statement also applies to Eq. (1.2), which will be solved 
by the iteration method and can be brought to the general type by introducing an iterative parameter. 

Let us map each of the subdomains m of the form 0 ~< x <~ 1, fm( t ,x )  <~ y <<. fm+l(t ,x)  (m = 
0 , . . . ,  M - 1) into a square with sides 0 ~ ~ <~ 1, 0 ~< ,/~< 1 using the transformation 

Y - f"(~'  ~) (2.1) 
"- x, 77 = /m+l(t,x)- fm(t,z)" 

Then each of Eqs. (I,~)-(1.4) can be represented in the form 

0r  i r O / ,n O• m O~. m 0r c9 ~,( B ~  O0 O0 m 0r  0r  

Here 

1 [OI, n oSm'~ 
I,,,=:,,,+~(t,O-Y,,(t,O, R7=~,---~-,7+ 0t/' 
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[aim cofn'~ 1 + (B~) 2 
B~ = In', B~2 = -~,--~--7/+ O~ ] '  B~2 - In" 

Hence it follows that 
n" n" BllB22 - (B~"2) 2 = 1. 

If a subdomain filled by a liquid phase is considered, then we have for 4> = w 

B i n = l ,  A ~ = I ,  R ~ ' = G r m ( B ~ I  1coT OT~ 
In, \ ~ -  + S ~  N , ,  ' 

for 4> = T 

and for 4> = r 

B,n = A~ = Prn', 

1 
B , n = ~ ,  A~ '=0 ,  R ~ ' = 0 ,  R2=wA 

(Grin, Pr,,, are the Grashof and Prandtl numbers, A is an iteration parameter). 
If a subdomain filled by a solid phase is considered, then we have for 4> = T 

(2.3) 

(2.4) 

S n "  ~ Pr fo , ,  

Let us introduce the following notations: 

O4> O4> COr 
U(4>) = Bll  ~ -  + B12 ~ "  - A14> ~qq, 

AT'=O, 

04> 04> COr 
V(4>) = B12 ~ -  + 822 ~ + A1r -~-, (2.5) 

and, using relations (2.4), we have [31 

1 [4>,1 + B12U(4>.) + B2A14>], 1 [4>~ + B12V(4>) - B1A14>], V(4>) = s(4>) (2.6) 

where 

cOr B22~-~; B2 ~ + B12 cOy. B1 -- B12 ~ -  + = Bll cor cOr 

Then, for each m, Eq. (2.2) has the form 

c0(I) 1[ ] 
= + + R1r + R2. (2.7) 

Equation (2.7) is obtained in the form of conservation laws, which is especially important for calculation of 
temperature. 

The choice of mathematical model and method of solution extended all the difficulties associated with 
the solution of the problem as a whole to the solution of a parabolic equation in a "good" domain, but 
having variable coefficients and mixed derivatives. Here the coefficients of the differential equation depend 
eventually on the solution itself. In solving this type of problem, the method of decomposition into physical 
processes [4] which lead to the problem splitting into evolutional and boundary problems gives good results. 
In the evolutional problem, the solution to Eq. (2.7) with the coefficients B~l(tk) , B~2(tk) , B~2(tk) taken from 
the previous iteration step s is found at each time step with the help of an appropriate difference scheme. 
In the boundary problem, a matrix for the coefficients of Eq. (2.7) is determined, that is, B~l(tk), B~2(tk), 
B~2(tk) , using the solution to this equation. The solution obtained at the previous time step is taken as an 
initial iteration. 
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The solution to Eq. (2.7) at each time step will be sought using the stabilizing correction scheme [5] 
taken in the form 

@k+l/2 _ @2 
1 [U t +1/2(@)] ~lw~ + 7" " =  B I  (t~) "F V :  jr. D ar, k+l[2 R2k+1/2, 

(2.8) 
@k+l _ r 1 rrrk+lc '  _ rrk.]. 

=BltV  , ,  

Here 

1 [~+x/2 + B12Ut,(~)+ B2AI~k+I/2], V(@)k+l]2 -- Bll 

U/~+I(@) = ~ 1  [@~ +1 + B12Vi'+l/2(@) -- BiAi@/~+l]. 
(2.9) 

The stabilizing correction scheme falls into the class of economical difference schemes with fractional steps, 
where the first fractional step gives a full approximation of the equation and the next step is corrective and 
serves to improve of stability. 

In order to realize the scheme (2.8), (2.9) in each of the squares corresponding to the subdomains m, 
a rectangular grid is constructed in a standard way: 

f i = ( i - 1 )  Af, A ~ = i / L ,  i = I , . . . , L L ,  L L = L + I ,  

7/i = (j - i) 'M, a ,  = i /J ,  j = 1 , . . . , J  J, J J  = J + 1. 

Differential expressions of the type (all~)~, (a22~n)T/, ~ ,  ~n are approximated, with the second 
order of accuracy, by the finite-difference analogs All,A22, A1,A2, respectively, which have traditional 
representations [5, 6]. For the approximation of the mixed derivative, for example, (ai2@~)n, we used, in 
accordance with [5, 7], the operator 

A12O = (al2)i,j+l(Oi+l,j+l - ~i+l,j-1) - (al2)i,j-l(e~i-l,j+l - r  
4A~Ar/ 

The operator A21~ is determined in a similar way. Then scheme (2.8), (2.9) will approximate (2.7) with an 
accuracy O(r + h2), taking into account boundary conditions similar to (1.6). It is absolutely stable and 
converges to the solution of (2.?) at 7" --~ 0 [5]. It should be noted that the representations for U(~) and V(~) 
taken in the form of (2.6) enhance the stability of the scheme at Bi2 > 1, in contrast to (2.5), owing to the 
coefficient I/B22 [3]. 

Replacing the derivatives in (2.8) by the corresponding finite differences and substituting the difference 
analogs of V~+I/2(@) and Ut+a(@ ) from (2.9), we obtain a system of linear difference equations relative to 
the function iI~(~i, r/j ) at each half-time step (k + 1/2, k + 1) for all internal points (i = 2 , . . . ,  L, j = 2, . . . ,  J). 
The system has a three-diagonal structure with diagonal elements predominating in the matrix, and can be 
effectively solved by the Thomas algorithm, taking into account specific boundary conditions. 

The iterative process is realized in the following way. Let the solution to Eq. (2.7) for the temperature 
and location of the phase boundaries fro(tic, x) at the time t = tk be known. On determining the movement 
velocity of each of the boundaries V~n(tk+l, x) in the directions normal to these boundaries using the Stefan 
condition, we find new locations of the phase boundaries fm(tk+l, x) at the time tk+i = tk + v (Fig. 2) for 
each m. Then, the matrix of the coefficients Bin, B12,/322 of Eq. (2.7) is determined using formulas (2.3). 

Finally, after solving this equation with new coefficients, we obtain the temperature distribution in 
each of the subdomains m at the time t/~+l at the iteration s = 0. At each time step, iterations are performed 
until the condition 

I(V (xO) l 
,.,i ICVg,(zi))"+ll 
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Fig. 2 

is fulfilled. Here s is the iteration number, and r is the given accuracy. 
As is obvious from the description, the iterative process organized in this way does not violate the 

conservation laws in any of the subdomains m, and the approximating operator retains its elliptical form at 
each iteration in any of the subdomains m. It is these properties that  provide convergence of the iterative 
process [4, 8]. 

3. C a l c u l a t i o n  of  T e m p e r a t u r e .  Let us transform the boundary conditions (1.6)-(1.8) to new 
variables. Then condition (1.6) relating to the external solid boundaries of the domain G will take the following 
form: for each subdomain m at ~ = 0 and ~ = 1, 

= o + = o = ( 3 . 1 )  otmT m 

~=1 ~=1 

(a, fl, 3' take their values for each of the sides ~ = O, ~ = 1); for the subdomain rn = 1 and 7/= 0 

o~IT1]r "4- /~1 V(TI)I,/=0 ---- ~l(t); (3.2) 

~1 + (Bh) ~ 7=0 

for the subdomain-rn = M and 7/= 1 

aMTMI~=I  + ~M v(TM)I~I=I ~. .TM(t)" 

~rm:  

(3.3) 

At the internal boundaries, conjugation conditions (1.7) and (1.8) will take, respectively, the following 

Tm(~,  1) = T'n+l(~,  0), m = 1 , . . . ,  M - 1; (3.4) 

V,~ = 1 [kin V(T") I , I=I  - km+l V(Tm+I)],I=o]. (3.5) 
~/1 + (B~)21.=1 

In the calculation of the temperature field of each of the subdomains m from the domain G, three cases 
are possible. 

A.  All the boundaries fm are fixed and known in advance, and the temperature at the interface is 
unknown. The following scheme of solution is proposed for determination of the temperature field in the 
domain G. At the first stage, the first equation of system (2.8) in the direction 7/is solved. Then we obtain 
the following system of equations for all the internal points ({ = 2 , . . . ,  L, j = 2 , . . . ,  J )  of each of the 
subdomains m: 

-aTTT_ , + bTT 7' - c7T~+1 = d~i . (3.6) 

Hereafter the indices i are omitted for simplicity. The solution to system (3.6) will be sought using the 
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parametric Thomas algorithm [9] 

T 7 = Pm(j)T.~ + Q'( j )T~ + R'~(j), m = 1 , . . . ,  M, (3.7) 

where P, Q, R are one-dimensional arrays; T. m is the temperature at the lower boundary of the subdomain m; 
T~  is the temperature at its upper boundary. In order to determine the unknowns T. 'n and T.m., we use the 
conditions of conjugation (3.5), assuming that V~ = 0: 

kmr mOT" B,nOT'n]l _ k,,+l[B~+lOT'n+l + B~+IOTm+I 
, -  I. 2 0,7 ]J,7=o" (3.8) 

Substituting, instead of the temperature values at the near-boundary points, their expressions using (3.7) 
into the difference analog of this equation and taking into account that T~  = T. ~+1, we obtain, in order to 
determine T, m, a system of m equations with a three-diagonal structure of the matrix [10]. At large M, it can 
be solved by the Thomas algorithm, taking into account the boundary conditions (3.2) and (3.3). Then, using 
formulas (3.7), we reconstruct all the other temperature values for each m. 

At the second stage, the second equation of (2.8) for each m in the direction ~ is solved. The systems of 
difference equations obtained are solved by the conventional Thomas algorithm, taking into account boundary 
conditions (3.1). 

B. All the internal boundaries fm(t,x) are mobile. In this case, the temperature at the interface is 
known [temperature of crystallization (melting)]. The main difficulty is that in the calculation of temperature, 
the coefficients of difference equations [see (3.6)] depend on locations of the boundaries fro(t, x), which, in 
turn, depend on temperature. Therefore, system of equations (2.8) for determination of temperature is solved 
together with condition (3.5) using the iterative process described in Sec. 2 for all m. The value from the 
lower time layer is taken as an initial approximation of V,~,. The systems of difference equations obtained are 
solved by the Thomas algorithm. 

C. Only a part of the internal boundaries f,n is mobile. In this case, the system of equations (2.8) 
for the determination of temperature is solved together with (3.4), (3.5) by an iterative method for V~. The 
systems of difference equations obtained are solved by the parametric Thomas algorithm using the condition 
that the temperature at the mobile boundaries is known. 

4. Ca lcu la t ions  of  Veloci ty Vor tex  and  S t r e a m  Func t ion .  In the solution of the Navier-Stokes 
equations using the variables (r w), the boundary conditions for w are not specified explicitly, as a rule. Both 
boundary conditions are given for lb. 

Further, one of these conditions is used to solve the equation that determines the stream function, 
and the other is used to obtain expressions relating the stream function to the vortex at the boundary. The 
formulas of Thoma, Woods, etc. are examples of such relations. 

Let a subdomain m be bounded from below by the curve f,,(t,x) (which corresponds to q = 0), and 
from above - -  by the curve fm+l(t, x) (T/= 1). We need not give our reasoning for both boundaries, but only 
for one boundary, say for f , , ( t ,  x). From relations (2.5) for the stream function and (1.9) it follows that, at 
77--0, 

--o, =o .  
11----0 7/=0 

In order to derive an expression relating the velocity vortex to the stream function at the boundary, 
let us turn to Eq. (L2), assuming that it is valid everywhere, up to the boundary. With the new variables 
(~, ,/), (1.2) will take the form 

1 [0U(r 0V(r (4.2) 
= -I,,,+---7 + J 

with conditions (4.1) at '7 = 0. 
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If ~,2(r is expanded into a Taylor series in the vicinity of the point (i, 1) lying on the line ~/= 0 in 
the direction r/, we obtain 

0v(r + 
07 

(4.3) 

Then (4.2), together with (4.1) and (4.3), gives a condition for w which is analogous to the Thoma condition 
on the line 7/= 0 (the corresponding mobile or fixed boundary f,~): 

O~i,l = I m  - -  " 

Actually, if the subdomain m is a rectangle, then 

On the other 
derivative c3r = 
Thoma condition 

(4.4) 

1 ( 0 r  = r 

hand, using the three-point approximation of the second order of accuracy for the 
0 at r/ = 0 and r = 0, we obtain [11] r = 4r Hence, we obtain the classical 

2 

For the calculation of the velocity vortex and stream function, the following scheme is proposed. At 
the first stage, Eq. (2.7) for the velocity vortex is solved using formulas (2.8). The boundary condition for 
it is taken from the lower time layer. At the second stage, the equation for the stream function is solved by 
iteration using the same formulas with boundary conditions (4.1). In order to relate the velocity vortex to the 
stream function, formula (4.4) is used. The iterative process at each time step is considered to be completed 
when the condition 

s + l  
wi,i -  4jI 

m.a.x s + l  < g 
',I Cai, j 

is achieved. 
Thus, one time step calculation of the velocity vortex and the stream function is finished. Then the 

process is repeated. 
R e m a r k .  The Stefan problem with convection is often investigated with the help of the shock capturing 

method for the equation of thermal conductivity with discontinuous coefficients, as proposed in [12]. As is 
shown in [2], the main difficulty in this case is associated with approximation of the functions being calculated 
near the crystallization front. When the smoothed heat capacity is used, pulsations of temperature occur in the 
area of the interface. They automatically cause pulsations of the stream function. In order to obtain a smooth 
solution, weight coefficients were introduced for the temperature, and special approximations rearranging 
themselves with the movement of the crystallization front were used for the stream function. 

Numerical calculations by the method proposed in this paper, using discontinuity, fitting and exactly 
satisfying the conditions on this discontinuity, showed that this method provides sufficient smoothness of the 
solution in each of the subdomains m. As for the program realization of the method for the calculations with 
the help of a personal computer, it is rather simple, since all the sought-for functions (T, % r are calculated 
using the same Computational procedure, taking into account boundary conditions. The main advantage of 
the method proposed is that it can help to effectively investigate the Stefan problem for thermal diffusion, 
i.e., crystallization (or melting) of a binary mixture, when the crystallization temperature of the melt is not 
a constant known Value., but some function of the concentration of an admixture component in the melt. 
The investigation of the Stefan problem for thermal diffusion with the help of the method of heat capacity 
smoothing is rather problematical. 
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Ezamples of calculation. In the examples considered below, calculations in each of the subdomains were 
carried out using grids of size 21 x 21 for the Grashof number Gr = 200,000 and the Prandtl  number Pr = 1. 
The thermophysical characteristics of water and ice were used as thermophysical characteristics for the liquid 
and solid phases in the calculations with phase transitions. 

1. In order to check the accuracy and effectiveness of the numerical algorithm, it is necessary to use 
exact solutions of the model equations or well-studied approximated solutions. Calculation of convective heat 
transport with lateral heating is a typical and well-studied example for testing a numerical algorithm in the 
solution of problems involving thermal convection [2]. 

Equations (1.1)-(1.3) are solved in a square closed domain with fixed boundaries. The velocity, the 
stream function, and the normal derivative of the stream function are equal to zero at the boundary of the 
domain. The temperature of the lateral sides is constant: 

T(t,  O, Y) = O, T(~, 1, Y) = 1. 

On the horizontal sides, a linear distribution of temperature is specified: 

T(t, x, y) = z. 

The test consists in obtaining the stationary solution until the following inequality is satisfied: 

(E k+l - E k ) / E  k + (Nu k+l - Nuk)/Nu k < e. 

Here E is kinetic energy; Nu is the net thermal flow (the Nusselt number); ~ is the given error; k is the number 
of time steps. 

Results of the calculation by the method proposed are given in Fig. 3, where a stands for isolines of 
the stream function and b stands for isotherms. Comparison of the calculation results with the data presented 
in [2] showed high accuracy of the calculation by the method proposed. It is remarkable that the use of formula 
(4.4) relating the stream function to the velocity vortex at the boundary gives a more accurate result for the 
stream function (we mean max r  than the use of the classical Thoma condition. The qualitative picture of 
the current fully coincides with that given in [2]. 

2. At the initial time, the domain G is a rectangle with sides z = 0, x = 1, y = 0, y = 2 filled with 
a substance in the liquid phase (subdomain I)  and solid phase (subdomain H) with a curvilinear interface 
between them f(0,  x) = 1 - 0.1 sin ~rx (Fig. 4) and the following temperature distribution: 

y = O :  T = I ;  f (0 , z ) :  T = O ;  y = 2 :  T = - 0 . 0 1 .  

At all the internal points of subdomains I and II, the temperature is specified by a linear law. At the initial 
time, the liquid is at rest. The boundary conditions have the form 

OT cgT 
z = 0 :  0---~=0; z = l :  ~ - n = 0 ;  

y = 0 :  T = I ;  y = 2 :  T = - 0 . 0 1 .  
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Figure 4 presents the initial location of the interface (dotted line), the new location of the interface 
(solid line), isolines of the stream function (a), and isotherms (b) for the time t = 1.19. The convective 
movement occurring in the liquid phase as a result of the boundary curvature forms two vortices. The stream 
lines are directed through the center from the bot tom upwards. The vortex movement tends to straighten out 
the interface. 

3. The  domain G (0 ~< x <~ 1, 0 ~< y <~ 3) is filled with a substance in the liquid (in the middle) and 
solid (above and below) phases with interfaces f1(0, x) = 1, f2(0, x) = 2 + 0.1 sin Trx between them with the 
following initial temperature distribution: 

at the fixed boundaries 

y=O and y=3:  T = - 0 . 0 1 ,  

at the interfaces 

f l  and f2 :  T = 0 .  

In the solid phase, a linear distribution of temperature is given. In the liquid phase, the temperature 
increases from 0 to 1 from the boundary fa to the middle of the subdomain; then, from the middle of the 
subdomain to its boundary f2, the temperature decreases from 1 to 0. At initial t ime the liquid is at rest. 
The boundary conditions are as follows: 

OT 
z = 0 ,  z = l :  ~--~n=0; y = 0 :  T = - 0 . 0 1 .  

At y = 3, the temperature  is initially constant (T = -0.01) until the development of a convective flow 
(t = 0.14). Then it abruptly decreases to T = -1 .5  and further is kept constant. 

Figure 5 presents the initial location of the interfaces (dotted lines), the new location (solid lines), 
isolines of the stream function (a), and isotherms (b) for the time t = 0.49. The stream lines are directed 
through the center of the domain from top to bottom. The formed vortex movement  is "drawing in" the upper 
boundary of the interface and slightly bends the lower boundary. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant 93-012-497). 
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